
This quadratic equation in is called the characteristic equation of A. Its solutions are
the eigenvalues of A. First determine these. Then use with to
determine an eigenvector of A corresponding to . Finally use with 
to find an eigenvector of A corresponding to . Note that if x is an eigenvector of
A, so is kx with any .

E X A M P L E  1 Eigenvalue Problem

Find the eigenvalues and eigenvectors of the matrix

(16)

Solution. The characteristic equation is the quadratic equation

.

It has the solutions . These are the eigenvalues of A.
Eigenvectors are obtained from . For we have from 

A solution of the first equation is . This also satisfies the second equation. (Why?) Hence an
eigenvector of A corresponding to is

(17) . Similarly,

is an eigenvector of A corresponding to , as obtained from with . Verify this.

4.1 Systems of ODEs as Models 
in Engineering Applications

We show how systems of ODEs are of practical importance as follows. We first illustrate
how systems of ODEs can serve as models in various applications. Then we show how a
higher order ODE (with the highest derivative standing alone on one side) can be reduced
to a first-order system.

E X A M P L E  1 Mixing Problem Involving Two Tanks

A mixing problem involving a single tank is modeled by a single ODE, and you may first review the
corresponding Example 3 in Sec. 1.3 because the principle of modeling will be the same for two tanks. The
model will be a system of two first-order ODEs.

Tank and in Fig. 78 contain initially 100 gal of water each. In the water is pure, whereas 150 lb of
fertilizer are dissolved in . By circulating liquid at a rate of and stirring (to keep the mixture uniform)
the amounts of fertilizer in and in change with time t. How long should we let the liquid circulate
so that will contain at least half as much fertilizer as there will be left in ?T2T1

T2y2(t)T1y1(t)
2 gal>minT2

T1T2T1

�l � l2(14*)l2 � �0.8

x(2) � c 1

0.8
dx(1) � c2

1
d

l1 � �2.0
x1 � 2, x2 � 1

  �1.6x1  � (1.2 � 2.0)x2 � 0.

 (�4.0 � 2.0)x1 �   4.0x2  � 0

(14*)l � l1 � �2(14*)
l1 � �2 and l2 � �0.8

det ƒ A � lI ƒ � 2  �4 � l 4

�1.6 1.2 � l 

2 � l2 � 2.8l � 1.6 � 0

A � c�4.0 4.0

�1.6 1.2
d

k � 0
l2x(2)

l � l2(14*)l1x(1)
l � l1(14*)l1 and l2

l
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Solution. Step 1. Setting up the model. As for a single tank, the time rate of change of equals
inflow minus outflow. Similarly for tank . From Fig. 78 we see that

(Tank ) 

(Tank ).

Hence the mathematical model of our mixture problem is the system of first-order ODEs

(Tank )

(Tank ).

As a vector equation with column vector and matrix A this becomes

.

Step 2. General solution. As for a single equation, we try an exponential function of t,

(1) .

Dividing the last equation by and interchanging the left and right sides, we obtain

.

We need nontrivial solutions (solutions that are not identically zero). Hence we have to look for eigenvalues
and eigenvectors of A. The eigenvalues are the solutions of the characteristic equation

(2) .

We see that (which can very well happen—don’t get mixed up—it is eigenvectors that must not be zero)
and . Eigenvectors are obtained from in Sec. 4.0 with and . For our present
A this gives [we need only the first equation in ]

and , (�0.02 � 0.04)x1 � 0.02x2 � 0�0.02x1 � 0.02x2 � 0

(14*)
l � �0.04l � 0(14*)l2 � �0.04

l1 � 0

det (A � lI) � 2  �0.02 � l 0.02

0.02 �0.02 � l
 2 � (�0.02 � l)2 � 0.022 � l(l � 0.04) � 0

Ax � lx

eltlxelt � Axelt

y � xelt.  Then  yr � lxelt � Axelt

yr � Ay,  where  A � c�0.02 0.02

0.02 �0.02
d

y � c y1

y2

d

T2 yr2 � 0.02y1 � 0.02y2

T1 yr1 � �0.02y1 � 0.02y2

T2yr2 � Inflow>min � Outflow>min �
2

100
 y1 �

2

100
 y2

T1yr1 � Inflow>min � Outflow>min �
2

100
 y2 �

2

100
 y1

T2

y1(t)yr1(t)
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Fig. 78. Fertilizer content in Tanks (lower curve) and T2T1
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respectively. Hence and , respectively, and we can take and .
This gives two eigenvectors corresponding to and , respectively, namely,

and .

From (1) and the superposition principle (which continues to hold for systems of homogeneous linear ODEs)
we thus obtain a solution

(3)

where are arbitrary constants. Later we shall call this a general solution.

Step 3. Use of initial conditions. The initial conditions are (no fertilizer in tank ) and .
From this and (3) with we obtain

In components this is . The solution is . This gives the answer

.

In components,

(Tank , lower curve)

(Tank , upper curve).

Figure 78 shows the exponential increase of and the exponential decrease of to the common limit 75 lb.
Did you expect this for physical reasons? Can you physically explain why the curves look “symmetric”? Would
the limit change if initially contained 100 lb of fertilizer and contained 50 lb?

Step 4. Answer. contains half the fertilizer amount of if it contains of the total amount, that is,
50 lb. Thus

.

Hence the fluid should circulate for at least about half an hour.

E X A M P L E  2 Electrical Network

Find the currents and in the network in Fig. 79. Assume all currents and charges to be zero at ,
the instant when the switch is closed.

t � 0I2(t)I1(t)

�

y1 � 75 � 75e�0.04t � 50,   e�0.04t � 1
3 ,  t � (ln 3)>0.04 � 27.5

1>3T2T1

T2T1

y2y1

T2 y2 � 75 � 75e�0.04t

T1 y1 � 75 � 75e�0.04t

y � 75x(1) � 75x(2)e�0.04t � 75 c1
1
d � 75 c 1

�1
d  e�0.04t

c1 � 75, c2 � �75c1 �  c2 � 0, c1 �  c2 � 150

y(0) � c1 c1
1
d � c2 c 1

�1
d � c c1 � c2

 c1 � c2

d � c 0

150
d .

t � 0
y2(0) � 150T1y1(0) � 0

c1 and c2

y � c1x(1)el1t � c2x(2)el2t � c1 c1
1
d � c2 c 1

�1
d e�0.04t

x(2) � c 1

�1
dx(1) � c1

1
d

l2 � �0.04l1 � 0
x1 � �x2 � 1x1 � x2 � 1x1 � �x2x1 � x2
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Solution. Step 1. Setting up the mathematical model. The model of this network is obtained from
Kirchhoff’s Voltage Law, as in Sec. 2.9 (where we considered single circuits). Let and be the currentsI2(t)I1(t)

Switch
t = 0

E = 12 volts

L = 1 henry C = 0.25 farad

R
1
 = 4 ohms

R
2
 = 6 ohms

I
1

I
1

I
1

I
2

I
2

I
2

Fig. 79. Electrical network in Example 2
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in the left and right loops, respectively. In the left loop, the voltage drops are over the inductor
and over the resistor, the difference because and flow through the resistor in
opposite directions. By Kirchhoff’s Voltage Law the sum of these drops equals the voltage of the battery; that
is, , hence

(4a) .

In the right loop, the voltage drops are and over the resistors and
over the capacitor, and their sum is zero,

or .

Division by 10 and differentiation gives .
To simplify the solution process, we first get rid of , which by (4a) equals .

Substitution into the present ODE gives

and by simplification

(4b) .

In matrix form, (4) is (we write J since I is the unit matrix)

(5) , where .

Step 2. Solving (5). Because of the vector g this is a nonhomogeneous system, and we try to proceed as for a
single ODE, solving first the homogeneous system (thus ) by substituting . This
gives

, hence .

Hence, to obtain a nontrivial solution, we again need the eigenvalues and eigenvectors. For the present matrix
A they are derived in Example 1 in Sec. 4.0:

, ; ,

Hence a “general solution” of the homogeneous system is

.

For a particular solution of the nonhomogeneous system (5), since g is constant, we try a constant column
vector with components . Then , and substitution into (5) gives ; in components,

The solution is ; thus . Hence

(6) ;

in components,

 I2 � c1e�2t � 0.8c2e�0.8t.

 I1 � 2c1e�2t � c2e�0.8t � 3

J � Jh � Jp � c1x(1)e�2t � c2x(2)e�0.8t � a

a � c3
0
da1 � 3, a2 � 0

 �1.6a1 � 1.2a2 �  4.8 � 0.

 �4.0a1 � 4.0a2 � 12.0 � 0

Aa � g � 0Jrp � 0a1, a2Jp � a

Jh � c1x(1)e�2t � c2x(2)e�0.8t

x(2) � c 1

0.8
d .l2 � �0.8x(1) � c2

1
dl1 � �2

Ax � lxJr � lxelt � Axelt

J � xeltJr � AJ � 0Jr � AJ

J � c I1

I2

d , A � c�4.0 4.0

�1.6 1.2
d , g � c12.0

4.8
dJr � AJ � g

Ir2 � �1.6I1 � 1.2I2 � 4.8

Ir2 � 0.4Ir1 � 0.4I2 � 0.4(�4I1 � 4I2 � 12) � 0.4I2

0.4(�4I1 � 4I2 � 12)0.4Ir1
Ir2 � 0.4Ir1 � 0.4I2 � 0

10I2 � 4I1 � 4�  I2 dt � 06I2 � 4(I2 � I1) � 4�  I2 dt � 0

(I>C)�  I2 dt � 4�  I2 dt [V]
R1(I2 �  I1) � 4(I2 � I1) [V]R2I2 � 6I2 [V]

Ir1 � �4I1 � 4I2 � 12

Ir1 � 4(I1 � I2) � 12

I2I1R1(I1 � I2) � 4(I1 � I2) [V]
LIr1 � Ir1 [V]
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The initial conditions give

Hence and . As the solution of our problem we thus obtain

(7)

In components (Fig. 80b),

Now comes an important idea, on which we shall elaborate further, beginning in Sec. 4.3. Figure 80a shows
and as two separate curves. Figure 80b shows these two currents as a single curve in the

-plane. This is a parametric representation with time t as the parameter. It is often important to know in
which sense such a curve is traced. This can be indicated by an arrow in the sense of increasing t, as is shown.
The -plane is called the phase plane of our system (5), and the curve in Fig. 80b is called a trajectory. We
shall see that such “phase plane representations” are far more important than graphs as in Fig. 80a because
they will give a much better qualitative overall impression of the general behavior of whole families of solutions,
not merely of one solution as in the present case. �

I1I2

I1I2

[I1(t), I2(t)]I2(t)I1(t)

 I2 � �4e�2t � 4e�0.8t.

 I1 � �8e�2t � 5e�0.8t � 3

J � �4x(1)e�2t � 5x(2)e�0.8t � a.

c2 � 5c1 � �4

 I2(0) � c1 � 0.8c2 � 0.

 I1(0) � 2c1 � c2 � 3 � 0
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Fig. 80. Currents in Example 2

Remark. In both examples, by growing the dimension of the problem (from one tank to
two tanks or one circuit to two circuits) we also increased the number of ODEs (from one
ODE to two ODEs). This “growth” in the problem being reflected by an “increase” in the
mathematical model is attractive and affirms the quality of our mathematical modeling and
theory.

Conversion of an nth-Order ODE to a System
We show that an nth-order ODE of the general form (8) (see Theorem 1) can be converted
to a system of n first-order ODEs. This is practically and theoretically important—
practically because it permits the study and solution of single ODEs by methods for
systems, and theoretically because it opens a way of including the theory of higher order
ODEs into that of first-order systems. This conversion is another reason for the importance
of systems, in addition to their use as models in various basic applications. The idea of
the conversion is simple and straightforward, as follows.
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T H E O R E M  1  Conversion of an ODE

An nth-order ODE

(8)

can be converted to a system of n first-order ODEs by setting

(9) .

This system is of the form

(10) .

P R O O F The first of these n ODEs follows immediately from (9) by differentiation. Also,
by (9), so that the last equation in (10) results from the given ODE (8).

E X A M P L E  3 Mass on a Spring

To gain confidence in the conversion method, let us apply it to an old friend of ours, modeling the free motions
of a mass on a spring (see Sec. 2.4)

For this ODE (8) the system (10) is linear and homogeneous,

Setting , we get in matrix form

The characteristic equation is

det (A � lI) � 4 �l 1

� 

k
m

� 

c
m

� l

 4 � l2 �
c
m

 l �
k
m

� 0.

yr � Ay � D 0 1

� 

k
m

� 

c
m

T c y1

y2

d .

y � c y1

y2

d
 yr2 � � 

k
m

 y1 �  

c
m

 y2.

 yr1 � y2

mys � cyr � ky � 0  or  ys � � 

c
m

 yr �  

k
m

 y.

�yrn � y(n)
n � 1

yr1 � y2

yr2 � y3

o

yrn�1 � yn

yrn �  F(t, y1, y2, Á , yn).

 

y1 � y, y2 � yr, y3 � ys, Á , yn � y(n�1)

y(n) � F(t, y, yr, Á , y(n�1))
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15. CAS EXPERIMENT. Electrical Network. (a) In
Example 2 choose a sequence of values of C that
increases beyond bound, and compare the corresponding
sequences of eigenvalues of A. What limits of these
sequences do your numeric values (approximately)
suggest?

(b) Find these limits analytically.

(c) Explain your result physically.

(d) Below what value (approximately) must you decrease
C to get vibrations?

k
1 

= 3

k
2 

= 2 (Net change in
 spring length
  = y

2 
– y

1
)

System in
motion

System in
static

equilibrium 

m
1 

= 1(y
1 

= 0)

(y
2 

= 0) m
2 

= 1

y
1

y
2

y
2

y
1

Fig. 81. Mechanical system in Team Project

1–6 MIXING PROBLEMS
1. Find out, without calculation, whether doubling the

flow rate in Example 1 has the same effect as halfing
the tank sizes. (Give a reason.)

2. What happens in Example 1 if we replace by a tank
containing 200 gal of water and 150 lb of fertilizer
dissolved in it?

3. Derive the eigenvectors in Example 1 without consulting
this book.

4. In Example 1 find a “general solution” for any ratio
, tank sizes being equal.

Comment on the result.

5. If you extend Example 1 by a tank of the same size
as the others and connected to by two tubes with
flow rates as between and , what system of ODEs
will you get?

6. Find a “general solution” of the system in Prob. 5.

7–9 ELECTRICAL NETWORK
In Example 2 find the currents:

7. If the initial currents are 0 A and A (minus meaning
that flows against the direction of the arrow).

8. If the capacitance is changed to . (General
solution only.)

9. If the initial currents in Example 2 are 28 A and 14 A.

10–13 CONVERSION TO SYSTEMS 
Find a general solution of the given ODE (a) by first converting
it to a system, (b), as given. Show the details of your work.

10. 11.

12.

13. ys � 2yr � 24y � 0

yt � 2ys � yr � 2y � 0

4ys � 15yr � 4y � 0ys � 3yr � 2y � 0

C � 5>27 F

I2(0)
�3

T2T1

T2

T3

a � (flow rate)>(tank size)

T1

14. TEAM PROJECT. Two Masses on Springs. (a) Set
up the model for the (undamped) system in Fig. 81.
(b) Solve the system of ODEs obtained. Hint. Try

and set . Proceed as in Example 1 or
2. (c) Describe the influence of initial conditions on the
possible kind of motions.

v2 � ly � xevt

P R O B L E M  S E T  4 . 1

It agrees with that in Sec. 2.4. For an illustrative computation, let , and . Then

This gives the eigenvalues and . Eigenvectors follow from the first equation in 
which is . For this gives , say, , . For it gives

, say, , . These eigenvectors

give

This vector solution has the first component

which is the expected solution. The second component is its derivative

�y2 � yr1 � yr � �c1e�0.5t � 1.5c2e�1.5t.

y � y1 � 2c1e�0.5t � c2e�1.5t

y � c1 c 2

�1
d  e�0.5t � c2 c 1

�1.5
d  e�1.5t.x(1) � c 2

�1
d , x(2) � c 1

�1.5
d

x2 � �1.5x1 � 11.5x1 � x2 � 0
l2 � �1.5x2 � �1x1 � 20.5x1 � x2 � 0l1�lx1 � x2 � 0

A � lI � 0,l2 � �1.5l1 � �0.5

l2 � 2l � 0.75 � (l � 0.5)(l � 1.5) � 0.

k � 0.75m � 1, c � 2
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